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ABSTRACT
Recent research suggests that deliberately manipulating a chatbot’s
personality and matching it to the user’s personality can positively
impact the user experience. Yet, little is known about whether this
similarity attraction effect also applies to the personality dimen-
sion agreeableness. In a lab experiment, 30 participants interacted
with three versions of an agreeable chatbot (agreeable, neutral, and
disagreeable). Whilst our results corroborate a similarity attrac-
tion effect between user agreeableness and their preference for the
agreeable chatbot, we did not find a reversed relationship with a
disagreeable chatbot. Our findings point to a need for moderate
instead of extreme chatbot personalities.
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1 INTRODUCTION
Chatbots are ubiquitous, integrated in customer service, online
shopping, and information retrieval applications. These conversa-
tional agents are often considered social actors [24], with users
unconsciously assigning them personalities [28]. Zhou et al. [41]
found out that deliberately manipulating this personality percep-
tion has an impact on user trust and engagement. Research on
other conversational agents (CAs), such as voice assistants [5] and
robots [1], corroborates these findings.

Similar to human-human interaction, users prefer certain per-
sonality types, tending to favour chatbots which share congruent
personalities with them [12, 33], coined the similarity attraction
effect [4, 23]. For example, matching user and chatbot personality
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had a positive impact on user engagement [33] as well as users’ self-
disclosure and their willingness to accept the chatbot’s advice [12].

Research on the similarity attraction effect in human-CA inter-
action has focused on the personality dimension Extraversion due
to its close link to behaviour [1, 12, 23]. However, other person-
ality traits, such as Agreeableness, seem particularly interesting
in this context, since CAs are primarily used as helpful assistants
in service applications. This is echoed by previous work on mod-
elling speech-based CA personality, which highlighted the role of
service-oriented personality dimensions [39].

It is questionable whether the preference for agreeable chat-
bots also follows a similarity attraction effect: Whilst agreeable
users are likely to favour an agreeable chatbot, disagreeable users
might not expect an uncooperative, unhelpful chatbot, given that
these characteristics are usually not associated with assistants. Sim-
ilarly, research on human-human similarity attraction found that
employees’ agreeableness only affected the attitude towards an
organisation for applicants high in agreeableness, not for those
with low scores [36].

In order to examine the relationship between user agreeableness
and their preference for agreeableness in chatbots, we developed
three different versions of an agreeable chatbot (agreeable, neu-
tral, disagreeable). To imbue the chatbot with personality, we draw
upon an abundance of work in psychology and linguistics that
has examined how personality is manifested through human lan-
guage [15, 21, 27, 31]. Similar to previous research [23], we leverage
this relationship to equip the chatbots with different language styles.
Specifically we address the following two research questions:

(1) RQ1: Can we synthesise different levels of agreeableness in a
chatbot by systematically varying its language style?

(2) RQ2: Is there a relationship between user agreeableness and
their preference for agreeableness in a chatbot?

2 RELATEDWORK
Below we summarise work on human and conversational agent
personality, personality markers in language, and adapting the
agent to the user.

2.1 Human and Conversational Agent
Personality

Personality describes an individual’s consistent and characteristic
patterns of behaviour, emotions, and cognition [20]. The Big Five
(also called Five-Factor model or OCEAN ) has emerged as the most
prevalent paradigm for modelling human personality in psychology
research and comprises five broad dimensions: Openness, Conscien-
tiousness, Extraversion, Agreeableness, Neuroticism. The dimension
Agreeableness reflects a tendency to be trustful, genuine, helpful,
modest, obliging, and cooperative.
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Since users treat conversational agents as if they were peo-
ple [24], HCI researchers also referred to the Big Five model for
describing differences in how conversational agents express be-
haviour [22, 32, 35]. For example, Ruane et al. [29] contrasted users’
perceptions of a chatbot high in extraversion and agreeableness
with a chatbot low in these two dimensions. For speech-based con-
versational agents, Cafaro et al. [5] manipulated the impression of
an extraverted virtual museum guide.

2.2 Personality Markers in Language
The relationship between human personality and perceptible be-
haviour cues has long been researched in psychology and linguis-
tics [6, 7, 9, 11, 21, 25–27, 30, 31]. People high in agreeableness are
characterised by using more positive (e.g., “love”, “happy”) and less
negative emotion words (e.g., “ugly”, “hurt”), whereas this ratio is
reversed for people low in agreeableness [21, 27, 40]. A person’s per-
sonality also influences their choice of words. For example, an agree-
able person’s language comprises more family-related (e.g., “For the
sake of my family.”) and inclusive words (e.g., “I felt included.”), con-
sistent with agreeable people’s predisposition towards strong social
relationships [15]. Moreover, agreeable people tend to use more
certainty-related words (e.g., “I felt total security.”) [15]. Conversely,
people low in agreeableness tend to slip in more swear words (e.g.,
“Damn!”) [16, 27] and mannerisms (e.g., “You know”) [31], along
with expressions of anger (e.g., “I hate school.”) [15]. Furthermore,
the use of emojis is associated with personality traits [19, 38]. Agree-
able people were found to use more blushing [19] and heart-related
emojis, such as kissing faces and hearts [38].

These insights have been leveraged to imbue chatbots with an
intended personality through design. For example, Ruane et al. [29]
synthesised two versions of a chatbot by imitating human choice of
words associated with extraversion and agreeableness. Zhou et al.
[41] used language styles, such as questioning style and expressive
vs terse phrases, to infuse different characteristics in their chatbots.

For speech-based conversational agents and robots, these lin-
guistic cues have been replenished with paraverbal and nonverbal
behaviour manifestations. For example, Lee and Nass [17] employed
different voice parameters, such as pitch, fundamental frequency,
speech rate, and volume, to create the impression of an extraverted
voice user interface whilst Andrist et al. [1] manipulated a robot’s
gaze behaviour to convey different expressions of extraversion.

Since the relationship between personality and behavioural cues
is most pronounced for the dimension extraversion, previous work
has mostly focused on imbuing CAs with different levels of ex-
traversion (e.g., [17, 23]). Notably, Ruane et al. [29] successfully
created the perception of a chatbot that is high in both extraversion
and agreeableness at the same time but they did not evaluate the
influence of user personality on chatbot preference. In contrast in
our work, we manipulate three different versions of agreeableness
in a chatbot and examine users’ preference for the three levels.

2.3 Adapting Conversational Agents to the
User

Users’ individual preferences for particular conversational agent
personalities have mostly been investigated for speech-based and
embodied conversational agents [10, 23, 37]. For example, extraverted

users were found to prefer a virtual real estate agent engaging in so-
cial talk [3] as well as an extraverted voice user interface on a book
buying website [23]. Similarly, interacting with an introverted robot
in a repetitive task increased introverted users’ motivation [1].

For text-based conversational agents, Shumanov and Johnson
[33] showed that matching the chatbot’s language style (introverted
vs extraverted) to the user’s level of extraversion can have a positive
impact on user engagement and increased purchases in a commerce
interaction. In a similar context, matching the chatbot’s and user’s
dominance levels resulted in perceptions of similarity, increasing
users’ self-disclosure of personal information during the conver-
sation [12]. In our work, we want to examine if this similarity
attraction effect can also be found for the personality dimension
agreeableness in human-chatbot interaction.

3 DEVELOPING A PERSONALITY-IMBUED
CHATBOT

To examine user preference for different levels of agreeableness,
we created three chatbots, situated in a web movie recommender
system. We chose this use case since chatbots are often employed
in customer service and we expected users to find the situation
relatable.

3.1 Conversation Flow
In order to determine the conversation flow between user and
chatbot, we asked N=5 streaming service users what questions they
would expect from a movie recommender chatbot. Four questions
emerged from the interviews: user’s preferred genre, available time,
mood, and company. The dialogue is therefore structured as follows:
The chatbot (1) welcomes the user, (2) asks the aforementioned
questions, (3) gives a movie recommendation based on the user’s
preferences, (4) with the user then either accepting it or asking for
another one, (5) the chatbot says goodbye.

3.2 Personality Manipulation
We deliberately manipulated the chatbot’s language to create three
distinctive versions, each representing a different level of agreeable-
ness (agreeable, neutral, disagreeable). Similar to previous studies
creating personality in robots or voice assistants [1, 5, 23], we lever-
aged verbal cues which are associated with human agreeableness
to imbue the chatbot with personality. Figure 1 shows an example
excerpt from the dialogue, along with its implementation in the
three chatbot versions.

Since agreeable people are characterised by being friendly, em-
pathetic, and willing to help [13], the agreeable chatbot agrees
with the user on opinions and expresses interpersonal concern for
the user. Notably, the agreeable chatbot employs positive emotions
words such as “nice” or “like” [27], family-related word such as
“together” or “family” [15, 40], words indicating certainty such as
“I’m sure” [15], as well as blushing [19] and kiss [38] emojis, as
informed by previous research.

Conversely, the disagreeable chatbot is pugnacious, critical,
uncooperative, and does not show any interest in the user [8], e.g.,
not asking for the user’s current mood. On top of that, it is equipped
with negative emotion words such as “bad” [27], swear words such
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Figure 1: Excerpts from the agreeable chatbot (left), neutral chatbot (middle), and disagreeable chatbot (right).

as “crap” [16], mannerisms such as “so” and “okay” [31], along with
expressions of anger (“I’m getting angry.”) [15].

Finally, the neutral chatbot showcases a neutral and polite
language, neither expressing positive nor negative emotions in
contrast to the other two versions. Moreover, it does not show a
reaction to the user’s choices, yet communicates in a respectful and
professional way.

3.3 Implementation
We implemented the three chatbot versions on Botpress1, an open
source development platform for CAs. For the purpose of our study,
we implemented a simple content-based recommender system,
based on users’ preferences and context. The data base consisted
of 30 movies, namely the three best-rated movies for ten common
genres, as informed by a German movie recommender website2.

4 RESEARCH DESIGN
We conducted a within-groups lab experiment to investigate our
research questions. In all three chatbot interactions, participants
were asked to inquire from the chatbot about a movie recommen-
dation. In each run, we slightly varied the task description to avoid
the monotonous repetition of the task. This variation of the task
description referred to the company, with which the user is watch-
ing the movie. Both the order of the chatbots as well as the task
descriptions were counterbalanced using a Latin Square.

After each interaction, we asked participants to describe their
impression of the chatbot. First, participants specified their percep-
tion of the chatbot’s agreeableness by filling out the agreeableness
items of the German version [8] of the Big Five Inventory-2 (BFI-2)
questionnaire [34]. This established personality questionnaire [2]
comprises twelve Likert scale items for each personality trait and
assesses agreeableness on three facets (namely, compassion, respect-
fulness, and trust). Second, participants indicated how much they
would like to interact with this chatbot again.

At the end of the study, we collected participants’ self-reported
level of agreeableness via the same BFI-2 personality question-
naire [8] as well as their overall ranking of the three chatbots.

1https://botpress.com
2www.moviepilot.de

We recruited participants using convenience sampling, mailings
lists, and social media. On average, each session took about 30 min-
utes. Participants were compensated for their effort withe 5 in cash
or study course credits. Our sample consisted of N=30 participants
(50% male, 50% female, age range: 18–54 years, 84% of participants
between 18 and 29 years old). Participants’ agreeableness scores
ranged from 2.08 to 4.67 with a mean score of 3.85 (SD=0.56), which
is comparable to the distribution of agreeableness scores in the
German population [8].

5 RESULTS
Below we present our results on the effectiveness of the agreeable-
ness manipulation, users’ desire to interact with the three chatbot
versions, and a potential similarity attraction effect between user
personality and preference for the chatbot personality.

5.1 Agreeableness Manipulation Check
Figure 2 shows participants’ evaluation of the three chatbots’ lev-
els of agreeableness. In line with the personality questionnaire
instructions [8, 34], we calculated the mean agreeableness score
for each chatbot (scale from 1=disagreeable to 5=agreeable). Overall,
the manipulation was successful, with the agreeable chatbot being
perceived as more agreeable (M = 4.54, SD = 0.30) than the neutral
chatbot (M = 4.06, SD = 0.63), and the disagreeable chatbot (M =
1.53, SD = 0.34). However, participants found the neutral chatbot
also rather agreeable. A Greenhouse-Geisser corrected repeated-
measures ANOVA underpins these results, pointing to significant
differences between the three versions (F(1.67, 48.33) = 381.12, p <
.001, η2 = 0.93). Pairwise post-hoc tests yielded significant differ-
ences between all three pairs (p < .001).

5.2 Desire to Interact with Chatbots
As shown in Figure 3, participants preferred interacting again with
the agreeable (M = 4.13, SD = 0.97) and neutral (M = 4.07, SD = 1.05)
chatbots, whilst the desire to chat with the disagreeable version
was rather low on average (M = 1.70, SD = 1.09). Since the data
was not normally distributed, we conducted a Friedman test, which
determined a significant effect of the chatbot on participants’ desire
to interact with the chatbot (χ2(2) = 36.94, p < .001). Pairwise
Nemenyi post-hoc tests yielded significant differences between the
preference for the agreeable and disagreeable chatbots (p = .001)



CUI ’21, July 27–29, 2021, Bilbao (online), Spain Anonymous et al.

Agreeable Chatbot Neutral Chatbot Disagreeable Chatbot

disagreeable 1

2

neutral 3

4

agreeable 5

Figure 2: Participants evaluated the three chatbots regarding
their perceived level of agreeableness.

Agreeable Chatbot Neutral Chatbot Disagreeable Chatbot

small desire 1

2

3

4

great desire 5

Figure 3: Participants evaluated the three chatbots regard-
ing how much they would like to interact with the chatbot
again.

as well as between the preference for the neutral and disagreeable
chatbots (p = .001). There was no significant difference between
participants’ desire to interact with the agreeable or neutral chatbot.

These findings are supported by participants’ ranking of the
three chatbots at the end of the study. The agreeable chatbot was
favoured by 53.3% of participants as a future interlocutor, the neutral
chatbot by 43.3%, and the disagreeable chatbot by 3.3% of partici-
pants. Whilst agreeable and neutral chatbot seem to share the ranks
one and two, the disagreeable chatbot was ranked worst by 86.7%
of participants.

5.3 Similarity Attraction Effect
In order to evaluate whether participants preferred a chatbot with
a matching level of agreeableness, we calculated Spearman’s rank
correlation coefficients (ρ) between participant and chatbot per-
sonality. Our results demonstrated a significant, moderate positive
relationship between participants’ agreeableness and their prefer-
ence for the agreeable chatbot (ρ = 0.47, p = .008). The correlations
between participants’ agreeableness and their desire to interact
with the neutral (ρ = 0.18, p = .342) and disagreeable chatbots (ρ =
-0.09, p = .635) were not significant.

6 LIMITATIONS
Our method and findings are limited in several ways and should be
understood with these limitations in mind.

First, whilst participants’ agreeableness scores correspond to the
German average agreeableness scores [8], a bigger sample repre-
senting a wider distribution of agreeableness is vital, yet difficult
to achieve since volunteers’ agreeableness in empirical studies are
often skewed towards positive scores [18].

Second, agreeable people are prone to more acquiescent and
positive response styles, probably due to social desirability [14].
Thus, agreeable participants might have evaluated all chatbots
higher due to their response style in contrast to more disagreeable
participants.

Third, the Big Five model was derived from human language
use to describe human personality. Recent work by Völkel et al.
[39] indicated that this model is not applicable to describe speech-
based conversational agent personality. Instead, they presented
ten alternative dimensions which comprise several subfacets of
agreeableness. Whilst our findings point to a successful perception
of agreeableness in chatbots, other theoretical models to specifically
describe chatbot personalities might be more suitable.

7 DISCUSSION AND FUTUREWORK
Our findings show that a chatbot’s level of agreeableness can be
deliberately manipulated by systematically varying its language,
confirming previous work by Ruane et al. [29]. However, designing
a “neutral” chatbot turned out to be more difficult; participants
perceived this chatbot also as rather agreeable. It is also not clear
whether a truly neutral chatbot can be designed at all since the
chatbot’s task is to assist the user.

Whilst we found a similarity attraction effect between user agree-
ableness and preference for the agreeable chatbot, our results do
not indicate a reversed relationship between user agreeableness
and their preference for the disagreeable chatbot, echoing work on
human-human interaction [36]. Notably, however, not all partici-
pants favoured the agreeable chatbot, either. Instead, when juxtapos-
ing the three chatbots, participants liked the agreeable and neutral
(perceived as moderately agreeable) chatbots almost equally.

A reason for this result could be that people are more used to
moderate personalities in humans; the distribution of human per-
sonality also follows a normal distribution, with medium scores of
a personality dimension being more frequent than the extremes [8].
However, little is known about how fine-grained levels of moderate
agreeableness can be implemented in conversational agents since
associations between “medium” levels of personality traits and their
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behaviour have not been the focus of psycho-linguistics until now.
The reason for this lack of knowledge is that the relationship be-
tween human personality and behaviour cues is usually calculated
via correlations (e.g., [15, 27]). Thus, little is known as to which
thresholds define different levels of personalities. For example, does
a moderately agreeable chatbot (in contrast to a highly agreeable
chatbot) use positive emotion words only in every third or seventh
sentence? As a consequence, previous work on user preference for
personality in conversational agents has usually examined dichoto-
mous types such as “extravert” and “introvert” [1, 5, 29], which tend
to represent extremes of the respective personality dimension.

Apart from individual user preferences, future work should also
examine the context of use. Whilst it is likely that in many current
customer service-oriented use cases, the majority of users will
expect an agreeable chatbot, there might be other scenarios in
which users enjoy a more moderately agreeable agent. For example,
a moderately agreeable chatbot might be more preferable to users
for time-critical or repetitive tasks whereas themore verbose, highly
agreeable chatbot could be favoured for chatty leisure-related tasks.

8 CONCLUSION
Recent research suggests that deliberately manipulating a conversa-
tional agent’s personality and matching it to the user’s personality
can positively impact the user experience. Yet, little is known about
whether this similarity attraction effect also applies to solely text-
based conversational agents, namely chatbots, and to the personal-
ity dimension agreeableness. Our findings show that different levels
of agreeableness can be infused in a chatbot through systematic
variations in its language. Whilst we found a similarity attraction
effect between user agreeableness and preference for the agreeable
chatbot, our results did not indicate a reversed relationship between
user agreeableness and their preference for the disagreeable chat-
bot. Instead, our findings point to a need for moderate personality
expressions in conversational agents. Future work should therefore
undertake a more fine-grained evaluation of user preference for
different levels of agreeableness and examine the influence of the
respective context on user preference.
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